INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
Authors
Abstract:
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
similar resources
infinitely many solutions for a class of p-biharmonic problems with neumann boundary conditions
the existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous neumann boundary conditions. using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous neumann boundary conditions, we obtain the result.
full textExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
full textINFINITELY MANY SOLUTIONS FOR CLASS OF NAVIER BOUNDARY (p, q)-BIHARMONIC SYSTEMS
This article shows the existence and multiplicity of weak solutions for the (p, q)-biharmonic type system ∆(|∆u|p−2∆u) = λFu(x, u, v) in Ω, ∆(|∆v|q−2∆v) = λFv(x, u, v) in Ω, u = v = ∆u = ∆v = 0 on ∂Ω. Under certain conditions on F , we show the existence of infinitely many weak solutions. Our technical approach is based on Bonanno and Molica Bisci’s general critical point theorem.
full textInfinitely Many Solutions for Kirchhoff Type Problems with Nonlinear Neumann Boundary Conditions
In this article, we study a Kirchhoff type problem with nonlinear Neumann boundary conditions on a bounded domain. By using variational methods, we prove the existence of infinitely many solutions.
full textInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
full textinfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{r}^n$
using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{r}^n$. the existence of nontrivial solution is established under a new set of hypotheses on the potential $v(x)$ and the weight functions $h_1(x), h_2(x)$.
full textMy Resources
Journal title
volume 3 issue 2
pages 207- 219
publication date 2014-12-31
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023